20.6. Multiple Regression#

Now that we have explored ways to use multiple attributes to predict a categorical variable, let us return to predicting a quantitative variable. Predicting a numerical quantity is called regression, and a commonly used method to use multiple attributes for regression is called multiple linear regression.

20.6.1. Home Prices#

The following dataset of house prices and attributes was collected over several years for the city of Ames, Iowa. A description of the dataset appears online . We will focus only a subset of the columns. We will try to predict the sale price column from the other columns.

all_sales = pd.read_csv(path_data + 'house.csv')
# len(all_sales)
all_sales
Order PID MS SubClass MS Zoning Lot Frontage Lot Area Street Alley Lot Shape Land Contour ... Pool Area Pool QC Fence Misc Feature Misc Val Mo Sold Yr Sold Sale Type Sale Condition SalePrice
0 1 526301100 20 RL 141.0 31770 Pave NaN IR1 Lvl ... 0 NaN NaN NaN 0 5 2010 WD Normal 215000
1 2 526350040 20 RH 80.0 11622 Pave NaN Reg Lvl ... 0 NaN MnPrv NaN 0 6 2010 WD Normal 105000
2 3 526351010 20 RL 81.0 14267 Pave NaN IR1 Lvl ... 0 NaN NaN Gar2 12500 6 2010 WD Normal 172000
3 4 526353030 20 RL 93.0 11160 Pave NaN Reg Lvl ... 0 NaN NaN NaN 0 4 2010 WD Normal 244000
4 5 527105010 60 RL 74.0 13830 Pave NaN IR1 Lvl ... 0 NaN MnPrv NaN 0 3 2010 WD Normal 189900
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2925 2926 923275080 80 RL 37.0 7937 Pave NaN IR1 Lvl ... 0 NaN GdPrv NaN 0 3 2006 WD Normal 142500
2926 2927 923276100 20 RL NaN 8885 Pave NaN IR1 Low ... 0 NaN MnPrv NaN 0 6 2006 WD Normal 131000
2927 2928 923400125 85 RL 62.0 10441 Pave NaN Reg Lvl ... 0 NaN MnPrv Shed 700 7 2006 WD Normal 132000
2928 2929 924100070 20 RL 77.0 10010 Pave NaN Reg Lvl ... 0 NaN NaN NaN 0 4 2006 WD Normal 170000
2929 2930 924151050 60 RL 74.0 9627 Pave NaN Reg Lvl ... 0 NaN NaN NaN 0 11 2006 WD Normal 188000

2930 rows × 82 columns

all_sales.describe()
Order PID MS SubClass Lot Frontage Lot Area Overall Qual Overall Cond Year Built Year Remod/Add Mas Vnr Area ... Wood Deck SF Open Porch SF Enclosed Porch 3Ssn Porch Screen Porch Pool Area Misc Val Mo Sold Yr Sold SalePrice
count 2930.00000 2.930000e+03 2930.000000 2440.000000 2930.000000 2930.000000 2930.000000 2930.000000 2930.000000 2907.000000 ... 2930.000000 2930.000000 2930.000000 2930.000000 2930.000000 2930.000000 2930.000000 2930.000000 2930.000000 2930.000000
mean 1465.50000 7.144645e+08 57.387372 69.224590 10147.921843 6.094881 5.563140 1971.356314 1984.266553 101.896801 ... 93.751877 47.533447 23.011604 2.592491 16.002048 2.243345 50.635154 6.216041 2007.790444 180796.060068
std 845.96247 1.887308e+08 42.638025 23.365335 7880.017759 1.411026 1.111537 30.245361 20.860286 179.112611 ... 126.361562 67.483400 64.139059 25.141331 56.087370 35.597181 566.344288 2.714492 1.316613 79886.692357
min 1.00000 5.263011e+08 20.000000 21.000000 1300.000000 1.000000 1.000000 1872.000000 1950.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 2006.000000 12789.000000
25% 733.25000 5.284770e+08 20.000000 58.000000 7440.250000 5.000000 5.000000 1954.000000 1965.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4.000000 2007.000000 129500.000000
50% 1465.50000 5.354536e+08 50.000000 68.000000 9436.500000 6.000000 5.000000 1973.000000 1993.000000 0.000000 ... 0.000000 27.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6.000000 2008.000000 160000.000000
75% 2197.75000 9.071811e+08 70.000000 80.000000 11555.250000 7.000000 6.000000 2001.000000 2004.000000 164.000000 ... 168.000000 70.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8.000000 2009.000000 213500.000000
max 2930.00000 1.007100e+09 190.000000 313.000000 215245.000000 10.000000 9.000000 2010.000000 2010.000000 1600.000000 ... 1424.000000 742.000000 1012.000000 508.000000 576.000000 800.000000 17000.000000 12.000000 2010.000000 755000.000000

8 rows × 39 columns

sales1 = all_sales[all_sales['Bldg Type'] == '1Fam']
sales2 = sales1[sales1['Sale Condition'] == 'Normal']

sales = sales2[['SalePrice', '1st Flr SF', '2nd Flr SF', 
    'Total Bsmt SF', 'Garage Area', 
    'Wood Deck SF', 'Open Porch SF', 'Lot Area', 
    'Year Built', 'Yr Sold']]

sales = sales.sort_values(by=['SalePrice'])

len(sales)
2002

A histogram of sale prices shows a large amount of variability and a distribution that is clearly not normal. A long tail to the right contains a few houses that had very high prices. The short left tail does not contain any houses that sold for less than $35,000.

fig, ax = plt.subplots(figsize=(5,4))
ax.hist(sales['SalePrice'], bins=32, density=True, alpha=0.8, ec='white', zorder=5)

unit = '$'
y_label = 'Percent per ' + (unit if unit else 'unit')
x_label = 'SalesPrice ($)' 
plt.ylabel(y_label, fontsize=12)
plt.xlabel(x_label, fontsize=12)

x_min, x_max = sales['SalePrice'].min(), sales['SalePrice'].max()   ### multiple assignment
ax.set_xticks(np.linspace(x_min, x_max+.01, 32))
# ax.set_xticks(np.linspace(0, 800000, 9))

plt.xticks(rotation=90, fontsize=8)
plt.yticks(fontsize=10)

y_vals = ax.get_yticks()
ax.set_yticks(y_vals)
ax.set_yticklabels(['{:g}'.format(x * 100) for x in y_vals])

plt.title('');
plt.show()
../../_images/9d6c0d0f074507b2d731270608a02b7cba1a71e064664d097fef9ff65147123e.png

20.6.1.1. Correlation#

No single attribute is sufficient to predict the sale price. For example, the area of first floor, measured in square feet, correlates with sale price but only explains some of its variability.

fig, ax = plt.subplots(figsize=(5,4))

ax.scatter(
    sales['1st Flr SF'], 
    sales['SalePrice'],   
    color='darkblue', 
    alpha=0.8,
    s=5
)

x_label = '1st Flr SF'
y_label = 'SalePrice'

plt.ylabel(y_label)
plt.xlabel(x_label)
plt.show()
../../_images/bce7f4e0cede9c5e1dcbf0d3cdb00daa04a0be445ec02e8416d87bdf16037760.png
correlation(sales, 'SalePrice', '1st Flr SF')
0.6424662541030225

In fact, none of the individual attributes have a correlation with sale price that is above 0.7 (except for the sale price itself).

for label in sales.columns:
    print('Correlation of', label, 'and SalePrice:\t', correlation(sales, label, 'SalePrice'))
Correlation of SalePrice and SalePrice:	 1.0
Correlation of 1st Flr SF and SalePrice:	 0.6424662541030225
Correlation of 2nd Flr SF and SalePrice:	 0.3575218942800824
Correlation of Total Bsmt SF and SalePrice:	 0.652978626757169
Correlation of Garage Area and SalePrice:	 0.6385944852520442
Correlation of Wood Deck SF and SalePrice:	 0.3526986661950491
Correlation of Open Porch SF and SalePrice:	 0.3369094170263733
Correlation of Lot Area and SalePrice:	 0.29082345511576946
Correlation of Year Built and SalePrice:	 0.5651647537135916
Correlation of Yr Sold and SalePrice:	 0.025948579080721124

However, combining attributes can provide higher correlation. In particular, if we sum the first floor and second floor areas, the result has a higher correlation than any single attribute alone.

sales_copy = sales.copy()
both_floors = sales_copy.iloc[:,1] + sales_copy.iloc[:,2]

sales_copy['Both Floors'] = both_floors
correlation(sales_copy, 'SalePrice', 'Both Floors')
0.7821920556134877
# sales_copy.iloc[:,2]
# sales_copy['2nd Flr SF']

This high correlation indicates that we should try to use more than one attribute to predict the sale price. In a dataset with multiple observed attributes and a single numerical value to be predicted (the sale price in this case), multiple linear regression can be an effective technique.

20.6.2. Multiple Linear Regression#

In multiple linear regression, a numerical output is predicted from numerical input attributes by multiplying each attribute value by a different slope, then summing the results. In this example, the slope for the 1st Flr SF would represent the dollars per square foot of area on the first floor of the house that should be used in our prediction.

Before we begin prediction, we split our data randomly into a training and test set of equal size.

20.6.2.1. Train/Test split#

sales_copy = sales.copy()
train = sales_copy.sample(1001, replace=False)
test = sales_copy.drop(train.index)

print(f"{len(train)} training and {len(test)} test instances.")
1001 training and 1001 test instances.

20.6.2.2. Function for train/test split#

def split(self, k):
    if not 1 <= k <= (len(self) - 1):
        raise ValueError("Invalid value of k. k must be between 1 and the"
                         "number of rows - 1")

    rows = np.random.permutation(len(self))     ### random shuffle of indices
    first = self.take(rows[:k])                 ### first k random rows → training set
    rest = self.take(rows[k:])                  ### remaining random rows → test set

    return (first, rest)                          ### return a single tuple object

train, test = split(sales, 1001)

print(len(train), 'training and', len(test), 'test instances.')
1001 training and 1001 test instances.

20.6.2.3. The scikit learn way#

We could employ the scikit learn train_test_split function to determine the train, test split.

import numpy as np
from sklearn.model_selection import train_test_split

train, test = train_test_split(sales_copy, test_size=0.5)

print(len(train), 'training and', len(test), 'test instances.')
1001 training and 1001 test instances.

The slopes in multiple regression is an array that has one slope value for each attribute in an example. Predicting the sale price involves multiplying each attribute by the slope and summing the result.

def predict(slopes, row):
    return sum(slopes * np.array(row))

example_row1 = test.drop(columns=['SalePrice'])
example_row = example_row1.iloc[0]

print('Predicting sale price for:')
print(example_row)

example_slopes = np.random.normal(10, 1, len(example_row))

print('\nUsing slopes:\n', example_slopes)

print('\nResult:', predict(example_slopes, example_row))
Predicting sale price for:
1st Flr SF       1567.0
2nd Flr SF          0.0
Total Bsmt SF    1567.0
Garage Area       714.0
Wood Deck SF      264.0
Open Porch SF      32.0
Lot Area         9819.0
Year Built       1977.0
Yr Sold          2009.0
Name: 987, dtype: float64

Using slopes:
 [11.23921808 11.6901262  10.10896541  9.80418403 11.57473382  8.55530722
 10.69362051 10.34192697  8.8555199 ]

Result: 187019.67939760862

The result is an estimated sale price, which can be compared to the actual sale price to assess whether the slopes provide accurate predictions. Since the example_slopes above were chosen at random, we should not expect them to provide accurate predictions at all.

print('Actual sale price:', test['SalePrice'].iloc[0])
print('Predicted sale price using random slopes:', predict(example_slopes, example_row))
Actual sale price: 196000
Predicted sale price using random slopes: 187019.67939760862

20.6.2.4. Least Squares Regression#

The next step in performing multiple regression is to define the least squares objective. We perform the prediction for each row in the training set, and then compute the root mean squared error (RMSE) of the predictions from the actual prices.

train_prices = train.iloc[:,0]
train1 = train.copy()
train_attributes = train1.drop(train1.columns[0], axis=1)

def rmse(slopes, attributes, prices):
    errors = []
    for i in np.arange(len(prices)):
        predicted = predict(slopes, attributes.iloc[i])
        actual = prices.iloc[i]
        errors.append((predicted - actual) ** 2)
    return np.mean(errors) ** 0.5

def rmse_train(slopes):
    return rmse(slopes, train_attributes, train_prices)

print('RMSE of all training examples using random slopes:', rmse_train(example_slopes))
RMSE of all training examples using random slopes: 82740.47779366456

Finally, we use the minimize function to find the slopes with the lowest RMSE. Since the function we want to minimize, rmse_train, takes an array instead of a number, we must pass the array=True argument to minimize. When this argument is used, minimize also requires an initial guess of the slopes so that it knows the dimension of the input array. Finally, to speed up optimization, we indicate that rmse_train is a smooth function using the smooth=True attribute. Computation of the best slopes may take several minutes.

scipy optimize.minimize

from scipy import optimize

def minimize(f, start=None, smooth=False, log=None, array=False, **vargs):
    """Minimize a function f of one or more arguments.
    Args:
        f: A function that takes numbers and returns a number
        start: A starting value or list of starting values
        smooth: Whether to assume that f is smooth and use first-order info
        log: Logging function called on the result of optimization (e.g. print)
        vargs: Other named arguments passed to scipy.optimize.minimize
    Returns either:
        (a) the minimizing argument of a one-argument function
        (b) an array of minimizing arguments of a multi-argument function
    """
    if start is None:
        assert not array, "Please pass starting values explicitly when array=True"
        arg_count = f.__code__.co_argcount
        assert arg_count > 0, "Please pass starting values explicitly for variadic functions"
        start = [0] * arg_count
    if not hasattr(start, '__len__'):
        start = [start]

    if array:
        objective = f
    else:
        @functools.wraps(f)
        def objective(args):
            return f(*args)

    if not smooth and 'method' not in vargs:
        vargs['method'] = 'Powell'
    result = optimize.minimize(objective, start, **vargs)
    if log is not None:
        log(result)
    if len(start) == 1:
        return result.x.item(0)
    else:
        return result.x
best_slopes = minimize(rmse_train, start=example_slopes, smooth=True, array=True)
 
train_df = pd.DataFrame(columns=[train_attributes.columns])

train_df.loc[0] = best_slopes

print('The best slopes for the training set:')

train_df
The best slopes for the training set:
1st Flr SF 2nd Flr SF Total Bsmt SF Garage Area Wood Deck SF Open Porch SF Lot Area Year Built Yr Sold
0 74.661368 71.923473 47.84372 57.502788 33.09423 13.849907 0.40374 507.372344 -504.880641
print(f'RMSE of all training examples using the best slopes: {rmse_train(best_slopes)}')
RMSE of all training examples using the best slopes: 30617.770698924305

20.6.2.5. Interpreting Multiple Regression#

Let’s interpret these results. The best slopes give us a method for estimating the price of a house from its attributes. A square foot of area on the first floor is worth about $75 (the first slope), while one on the second floor is worth about $70 (the second slope). The final negative value describes the market: prices in later years were lower on average.

The RMSE of around $30,000 means that our best linear prediction of the sale price based on all of the attributes is off by around $30,000 on the training set, on average. We find a similar error when predicting prices on the test set, which indicates that our prediction method will generalize to other samples from the same population.

test_prices = test.iloc[:,0]

test_attributes = test.drop(test.columns[0], axis=1)
test_attributes
1st Flr SF 2nd Flr SF Total Bsmt SF Garage Area Wood Deck SF Open Porch SF Lot Area Year Built Yr Sold
2843 498 0 498.0 216.0 0 0 8088 1922 2006
1901 334 0 0.0 0.0 0 0 5000 1946 2007
708 612 0 0.0 308.0 0 0 5925 1940 2009
1220 729 0 270.0 0.0 0 0 4130 1935 2008
1546 796 0 796.0 0.0 0 0 3636 1922 2008
... ... ... ... ... ... ... ... ... ...
2341 2000 0 1910.0 722.0 351 102 18261 2005 2006
2450 1933 1567 1733.0 959.0 870 86 17242 1993 2006
1063 2470 0 2535.0 789.0 154 65 12720 2003 2008
2445 1831 1796 1930.0 807.0 361 76 35760 1995 2006
1767 2444 1872 2444.0 832.0 382 50 21535 1994 2007

1001 rows × 9 columns

Now we use the best_slopes from the training set in the test.

test_prices = test.iloc[:,0]
test_attributes = test.drop(test.columns[0], axis=1)

def rmse_test(slopes):
    return rmse(slopes, test_attributes, test_prices)

rmse_linear = rmse_test(best_slopes)
print('Test set RMSE for multiple linear regression:', rmse_linear)
Test set RMSE for multiple linear regression: 31591.821870325915

If the predictions were perfect, then a scatter plot of the predicted and actual values would be a straight line with slope 1. We see that most dots fall near that line, but there is some error in the predictions.

def fit(row):
    return sum(best_slopes * np.array(row))

test['Fitted'] = test_attributes.apply(fit, axis=1)

fig, ax = plt.subplots(figsize=(4,4))

ax.scatter(
    test['Fitted'], 
    test['SalePrice'],   
    color='navy', 
    alpha=0.5,
    s=10
)

x_label = 'Fitted'
y_label = 'SalePrice'

plt.ylabel(y_label)
plt.xlabel(x_label)

plt.plot([0, 5e5], [0, 5e5], lw=2)

plt.show()
../../_images/b68e2effac55d3aa173dac4df4ec55a4082d9c33d163c6b642358a3766ce7b4b.png

A residual plot for multiple regression typically compares the errors (residuals) to the actual values of the predicted variable. We see in the residual plot below that we have systematically underestimated the value of expensive houses, shown by the many positive residual values on the right side of the graph.

test['Residual'] = test_prices-test_attributes.apply(fit, axis=1)

fig, ax = plt.subplots(figsize=(4,4))

ax.scatter(
    test['SalePrice'], 
    test['Residual'],   
    color='navy', 
    alpha=0.5,
    s=10
)

x_label = 'SalePrice'

y_label = 'SalePrice'

plt.ylabel(y_label)

plt.xlabel(x_label)

plt.xticks(rotation=90)

plt.plot([0, 7e5], [0, 0], lw=2)

plt.show()
../../_images/e6b3509082f21f19943af69fbbb16b6a75c46a06237dc4d493214e0d2eb77d01.png

As with simple linear regression, interpreting the result of a predictor is at least as important as making predictions. There are many lessons about interpreting multiple regression that are not included in this textbook. A natural next step after completing this text would be to study linear modeling and regression in further depth.

20.6.3. Nearest Neighbors for Regression#

Another approach to predicting the sale price of a house is to use the price of similar houses. This nearest neighbor approach is very similar to our classifier. To speed up computation, we will only use the attributes that had the highest correlation with the sale price in our original analysis.

train_nn = train.iloc[:, [0, 1, 2, 3, 4, 8]]
test_nn = test.iloc[:, [0, 1, 2, 3, 4, 8]]
train_nn
SalePrice 1st Flr SF 2nd Flr SF Total Bsmt SF Garage Area Year Built
2142 127000 864 0 864.0 576.0 1972
2201 148500 567 531 531.0 216.0 1930
2643 110000 813 0 813.0 270.0 1930
1703 317000 1143 1330 1143.0 852.0 2004
26 126000 882 0 882.0 525.0 1970
... ... ... ... ... ... ...
867 198500 840 885 840.0 550.0 2002
1396 152400 864 486 576.0 627.0 1941
1222 87000 453 453 348.0 231.0 1937
691 115000 818 406 818.0 210.0 1926
2149 200000 860 869 860.0 542.0 2002

1001 rows × 6 columns

The computation of closest neighbors is identical to a nearest-neighbor classifier. In this case, we will exclude the 'SalePrice' rather than the 'Class' column from the distance computation. The five nearest neighbors of the first test row are shown below.

def distance(pt1, pt2):
    """The distance between two points, represented as arrays."""
    return np.sqrt(np.sum((pt1 - pt2) ** 2))
    
def row_distance(row1, row2):
    """The distance between two rows of a table."""
    return distance(np.array(row1), np.array(row2))

def distances(training, example, output):
    """Compute the distance from example for each row in training."""
    dists = []
    attributes = training.drop(columns=[output])
    for row in range(len(attributes)):
        dists.append(row_distance(attributes.iloc[row], example))
    training['Distance'] = dists
    #print(training)
    return training

def closest(training, example, k, output):
    """Return a table of the k closest neighbors to example."""
    distance = distances(training, example, output).sort_values(by=['Distance']).take(np.arange(k))
    return distance

train_nn_A = train_nn.copy()
example_nn_row = test_nn.drop(test_nn.columns[0], axis=1).iloc[0]
closest(train_nn_A, example_nn_row, 5, 'SalePrice')
SalePrice 1st Flr SF 2nd Flr SF Total Bsmt SF Garage Area Year Built Distance
141 165500 1700 0 1398.0 447.0 1959 72.270326
375 200000 1671 0 1427.0 484.0 1978 112.058021
578 150000 1620 0 1281.0 490.0 1976 117.209215
2715 180000 1721 0 1461.0 440.0 1968 132.653684
1183 290000 1671 0 1426.0 550.0 1976 138.859641

One simple method for predicting the price is to average the prices of the nearest neighbors.

example_nn_row
1st Flr SF       1721.0
2nd Flr SF          0.0
Total Bsmt SF    1331.0
Garage Area       464.0
Year Built       1957.0
Name: 1924, dtype: float64
def predict_nn(example):
    """Return the majority class among the k nearest neighbors."""
    train_nn_B = train_nn.copy()
    
    col_sales_price = closest(train_nn_B, example, 5, 'SalePrice')
    return np.average(col_sales_price['SalePrice'])

predict_nn(example_nn_row)
np.float64(197100.0)

Finally, we can inspect whether our prediction is close to the true sale price for our one test example. Looks reasonable!

print('Actual sale price:', test_nn['SalePrice'].iloc[0])
print('Predicted sale price using nearest neighbors:', predict_nn(example_nn_row))
Actual sale price: 174850
Predicted sale price using nearest neighbors: 197100.0

20.6.3.1. Evaluation#

To evaluate the performance of this approach for the whole test set, we apply predict_nn to each test example, then compute the root mean squared error of the predictions. Computation of the predictions may take several minutes.

def predict_nn(example):
    """Return the majority class among the k nearest neighbors."""
    train_nn_B = train_nn.copy()
    
    col_sales_price = closest(train_nn_B, example, 5, 'SalePrice')
    return np.average(col_sales_price['SalePrice']).item(0)

predict_nn(example_nn_row)
197100.0
test_nn_C = test_nn.copy()
test_nn_drop = test_nn_C.drop(columns=['SalePrice'])

nn_test_predictions = test_nn_drop.apply(predict_nn, axis=1)
rmse_nn = np.mean((test_prices - nn_test_predictions) ** 2) ** 0.5

print('Test set RMSE for multiple linear regression: ', rmse_linear)
print('Test set RMSE for nearest neighbor regression:', rmse_nn)
Test set RMSE for multiple linear regression:  30125.47384508643
Test set RMSE for nearest neighbor regression: 33266.600357451876

For these data, the errors of the two techniques are quite similar! For different data sets, one technique might outperform another. By computing the RMSE of both techniques on the same data, we can compare methods fairly. One note of caution: the difference in performance might not be due to the technique at all; it might be due to the random variation due to sampling the training and test sets in the first place.

Finally, we can draw a residual plot for these predictions. We still underestimate the prices of the most expensive houses, but the bias does not appear to be as systematic. However, fewer residuals are very close to zero, indicating that fewer prices were predicted with very high accuracy.

test['Residual'] = test_prices-nn_test_predictions

fig, ax = plt.subplots(figsize=(4,4))

ax.scatter(
    test['SalePrice'], 
    test['Residual'],   
    color='red', 
    alpha=0.5,
    s=5
)

x_label = 'SalePrice'
y_label = 'SalePrice'
plt.ylabel(y_label)
plt.xlabel(x_label)
plt.xticks(rotation=90)
plt.plot([0, 7e5], [0, 0], lw=2)
plt.show()
../../_images/cc976498b18f0132acdfa4bb0e464e5ae7dd4070df6d04a6c07ac29d7419d876.png